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1. Introduction

This paper studies the class A of analytic functions f in D = {z ∈ C : |z|< 1} normalized
by f (0) = 0 = f ′(0)− 1. Let S be its subclass consisting of univalent functions. For
0≤α < 1, let S ∗(α) and C (α) be the subclasses of S consisting respectively of functions
starlike of order α and convex of order α . These are functions respectively characterized
by Re(z f ′(z)/ f (z)) > α and 1 + Re(z f ′′(z)/ f ′(z)) > α . The usual classes of starlike and
convex functions are denoted by S ∗ := S ∗(0) and C := C (0).

The Koebe function k(z) = z/(1− z)2, which maps D onto the region C\{w ∈ R : w ≤
−1/4}, is starlike but not convex. However, it is known that k maps the disk Dr := {z ∈
D : |z| < r} onto a convex domain for every r ≤ 2−

√
3. Indeed, every univalent function

f ∈S maps Dr onto a convex region for r≤ 2−
√

3 [8, Theorem 2.13, p. 44]. This number
is called the radius of convexity for S .

In general, for two families G and F of A , the G -radius of F , denoted by RG (F ), is
the largest number R such that r−1 f (rz) ∈ G for 0 < r ≤ R, and for all f ∈F . Whenever
G is characterized by possesing a geometric property P, the number R is also referred to as
the radius of property P for the class F .

Several other subclasses of A and S are also of great interest. In [13], Kaplan intro-
duced the close-to-convex functions f ∈ A satisfying f ′(z) 6= 0 and Re( f ′(z)/g′(z)) > 0
for some (not necessarily normalized) convex univalent function g. In his investigation on
the Bieberbach conjecture for close-to-convex functions, Reade [27] introduced the class
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of close-to-starlike functions. These are functions f ∈ A with f (z) 6= 0 in D \ {0} and
Re( f (z)/g(z)) > 0 for a (not necessarily normalized) starlike function g. Close-to-convex
functions are known to be univalent, but close-to-starlike functions need not. There are vari-
ous other studies on classes of functions in A characterized by the ratio between functions f
and g belonging to particular subclasses of A [4–7,9–11,14,16–19,21–25,27,28,31–34,38].

Radius constants have been obtained for several of these subclasses. In [18, 19], Mac-
Gregor obtained the radius of starlikeness for the class of functions f ∈A satisfying either

(1.1) Re
(

f (z)
g(z)

)
> 0 (z ∈ D) or

∣∣∣∣ f (z)
g(z)
−1
∣∣∣∣< 1 (z ∈ D)

for some g ∈ C . Ratti [23] determined the radius of starlikeness for functions f belonging
to a variant class of (1.1). In [16], MacGregor found the radius of convexity for univalent
functions satisfying | f ′(z)− 1| < 1, while Ratti [24] established the radius for functions f
satisfying ∣∣∣∣ f ′(z)

g′(z)
−1
∣∣∣∣< 1 (z ∈ D)

when g belongs to certain classes of analytic functions.
This paper finds radius constants for several classes of functions f ∈ A characterized

by its ratio with a certain function g. In the following section, the classes consisting of
uniformly convex functions, parabolic starlike functions, and Bernoulli lemniscate starlike
functions will be brought fore to attention. In the main, the real part of the involved ex-
pressions lie in the right half-plane, and so in Section 1.2, we shall gather certain results
involving functions of positive real part that will be required. Section 2 contains the main
results involving the radius of Bernoulli lemniscate starlikeness, radius of starlikeness of
positive order, and radius of parabolic starlikeness for several classes. These include the
subclasses satisfying one of the conditions: (i) Re( f (z)/g(z)) > 0 where Re(g(z)/z) > 0
or Re(g(z)/z) > 1/2, (ii) |( f (z)/g(z))−1| < 1 where Re(g(z)/z) > 0 or g is convex, and
(iii) |( f ′(z)/g′(z))−1|< 1 where Reg′(z) > 0. Section 3 is devoted to finding the radius of
uniform convexity for the classes |( f ′(z)/g′(z))−1| < 1, and g is either univalent, starlike
or convex.

1.1. Subclasses of univalent functions

This section highlights certain important subclasses of S that will be referred to in the
sequel. A function f ∈ S is uniformly convex if for every circular arc γ contained in D
with center ζ ∈ D, the image arc f (γ) is convex. The class U C V of all uniformly convex
functions was introduced by Goodman [12]. In two separate papers, Rønning [29] and Ma
and Minda [15] independently proved that

f ∈U C V ⇐⇒ Re
(

1+
z f ′′(z)
f ′(z)

)
>

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣ (z ∈ D).

Rønning [29] introduced a corresponding class of starlike functions called parabolic starlike
functions. These are functions f ∈A satisfying

Re
(

z f ′(z)
f (z)

)
>

∣∣∣∣ z f ′(z)
f (z)

−1
∣∣∣∣ (z ∈ D).

Denote the class of such functions by SP . It is evident that f ∈ U C V if and only if
z f ′(z) ∈SP . A recent survey on these classes can be found in [1] (see also [30]). The class
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SL , introduced by Sokół and Stankiewicz [35], consists of functions f ∈A satisfying the
inequality ∣∣∣∣∣

(
z f ′(z)
f (z)

)2

−1

∣∣∣∣∣< 1 (z ∈ D).

Thus a function f is in the class SL if z f ′(z)/ f (z) lies in the region bounded by the right-
half of the lemniscate of Bernoulli given by |w2− 1| < 1. Results related to the class SL

can be found in [2, 3, 36, 37]. Another class M (β ), β > 1, consisting of functions f ∈ A
satisfying

Re
(

z f ′(z)
f (z)

)
< β (z ∈ D),

was investigated by Uralegaddi et al. [39] and Owa and Srivastava [20].

1.2. On functions with positive real part

For 0 ≤ α < 1, let P(α) denote the class of functions p(z) = 1 + c1z + · · · satisfying the
inequality Re(p(z)) > α in D and write P := P(0). This class is related to various sub-
classes of S . The following results for functions in P(α) will be required in the sequel.

Lemma 1.1. [26] If p ∈P(α), then∣∣∣∣p(z)− 1+(1−2α)r2

1− r2

∣∣∣∣≤ 2(1−α)r
1− r2 (|z| ≤ r).

Lemma 1.2. [32] If p ∈P(α), then∣∣∣∣ zp′(z)
p(z)

∣∣∣∣≤ 2r(1−α)
(1− r)[1+(1−2α)r]

(|z| ≤ r).

Lemma 1.3. [6, Lemma 2.4] If p ∈P(1/2), then, for |z|= r,

Re
zp′(z)
p(z)

≥

{
−r/(1+ r), r < 1/3,

−(
√

2−
√

1− r2)2/(1− r2), 1/3≤ r ≤
√

8
√

2−11≈ 0.56.

Lemma 1.4. [2] Let 0 < a <
√

2. If ra is given by

ra =


(√

1−a2− (1−a2)
)1/2

, 0 < a≤ 2
√

2/3
√

2−a, 2
√

2/3≤ a <
√

2,

then
{w ∈ C : |w−a|< ra} ⊆ {w ∈ C : |w2−1|< 1}.

Lemma 1.5. [33] Let a > 1/2. If the number Ra satisfies

Ra =

{
a−1/2, 1/2 < a≤ 3/2√

2a−2, a≥ 3/2,

then
{w ∈ C : |w−a|< Ra} ⊆ {w ∈ C : |w−1|< Rew}.
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2. Radius Constants for Analytic Functions

Let F1 be the class of functions f ∈A satisfying the inequality

Re
(

f (z)
g(z)

)
> 0 (z ∈ D)

for some g ∈A with

Re
(

g(z)
z

)
> 0 (z ∈ D).

Ratti [23] showed that the radius of starlikeness of functions in F1 is
√

5−2≈ 0.2360 and
that the radius can be improved to 1/3 if the function g additionally satisfies Re(g(z)/z) >
1/2.

Theorem 2.1. For the class F1, the following sharp radius results hold:
(a) the S L -radius for F1 is

RS L =
√

2−1

2+
√

7−2
√

2
' 0.10247,

(b) the M (β )-radius for F1 is

RM (β ) =
β −1

2+
√

4+(β −1)2
,

(c) the S ∗(α)-radius for F1 is

RS ∗(α) =
1−α

2+
√

5+α2−2α
,

(d) the SP -radius for F1 is

RSP
= RS ∗(1/2) =

1
4+
√

17
' 0.12311.

Proof. (a) Let f ∈F1 and define p,h : D→ C by

p(z) =
g(z)

z
and h(z) =

f (z)
g(z)

.

Then p, h ∈P and f (z) = g(z)h(z) = zp(z)h(z). Thus

z f ′(z)
f (z)

= 1+
zp′(z)
p(z)

+
zh′(z)
h(z)

.

Using Lemma 1.2, it follows that

(2.1)
∣∣∣∣ z f ′(z)

f (z)
−1
∣∣∣∣≤ 4r

1− r2 , (|z|= r).

By Lemma 1.4, the function f satisfies∣∣∣∣∣
(

z f ′(z)
f (z)

)2

−1

∣∣∣∣∣≤ 1

provided
4r

1− r2 ≤
√

2−1,



On the Radius Constants for Classes of Analytic Function 27

or
(
√

2−1)r2 +4r +1−
√

2≤ 0.

This inequality yields r ≤ RS L .
To show that RS L is the sharp S L -radius for F1, consider the functions f0 and g0

defined by

(2.2) f0(z) = z
(

1+ z
1− z

)2

and g0(z) = z
(

1+ z
1− z

)
.

Since Re( f0(z)/g0(z)) = Re((1 + z)/(1− z)) > 0 and Re(g0(z)/z) > 0, the function f0
belongs to F1. Now

z f ′0(z)
f0(z)

= 1+
4z

1− z2 .

For z = ρ := RS L , ∣∣∣∣∣
(

z f ′0(z)
f0(z)

)2

−1

∣∣∣∣∣=
∣∣∣∣∣
(

1+
4ρ

1−ρ2

)2

−1

∣∣∣∣∣= 1.

This shows that the radius in (a) is sharp.
(b) From inequality (2.1), it follows that

Re
z f ′(z)
f (z)

≤ 1+
4r

1− r2 ≤ β

if
(1−β )+4r− (1−β )r2 ≤ 0,

that is, for r ≤ RM (β ). For the function f0 given by (2.2),

z f ′0(z)
f0(z)

=
4ρ +1−ρ2

1−ρ2 = β (z = ρ := RM (β )),

and so the radius is sharp.
(c) Inequality (2.1) also yields

Re
z f ′(z)
f (z)

≥ 1− 4r
1− r2 ≥ α

provided
r2(1−α)+4r− (1−α)≤ 0.

The last inequality holds whenever r ≤ RS ∗(α). The function f0 in (2.2) gives

z f ′0(z)
f0(z)

=
1−4ρ−ρ2

1−ρ2 = α

for z =−ρ :=−RS ∗(α), and this shows that the radius in (c) is sharp.
(d) In view of Lemma 1.5, the circular disk (2.1) lies completely inside the parabolic

region {w : |w−1|< Rew} provided
4r

1− r2 ≤
1
2
,

or
r2 +8r−1≤ 0.

The last inequality holds whenever r ≤ RSP
= RS ∗(1/2) = 1/(4+

√
17).
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The function f0 in (2.2) satisfies∣∣∣∣ z f ′0(z)
f0(z)

−1
∣∣∣∣= 4ρ

1−ρ2 =
1−ρ2−4ρ

1−ρ2 = Re
(

z f ′0(z)
f0(z)

)
(z =−ρ :−RSP

),

and so the result in (d) is sharp.
Consider next the class F2 of functions f ∈A satisfying

Re
(

f (z)
g(z)

)
> 0 (z ∈ D)

for some function g ∈A with

Re
(

g(z)
z

)
>

1
2

(z ∈ D).

Theorem 2.2. For the class F2, the following radius results hold:
(a) the S L -radius is

RS L =
4−2

√
2

√
2(
√

17−4
√

2+3)
' 0.13009,

(b) the M (β )-radius is

RM (β ) =
2(β −1)

3+
√

9+4β (β −1)
,

(c) the S ∗(α)-radius is

RS ∗(α) =
2(1−α)

3+
√

9−4α +4α2
,

(d) the SP -radius satisfies

RSP
≥−3+

√
10' 0.162278.

The radius in (a), (b), and (c) are sharp.

Proof. (a) Let f ∈F2, and define functions p,h : D→ C by

p(z) =
g(z)

z
and h(z) =

f (z)
g(z)

.

Then f (z) = zh(z)p(z) with h ∈P and p ∈P(1/2). Now

(2.3)
z f ′(z)
f (z)

= 1+
zh′(z)
h(z)

+
zp′(z)
p(z)

.

From Lemma 1.2, it follows that

(2.4)
∣∣∣∣ z f ′(z)

f (z)
−1
∣∣∣∣≤ 2r

1− r2 +
r

1− r
=

3r + r2

1− r2 .

By Lemma 1.4, the function f satisfies∣∣∣∣∣
(

z f ′(z)
f (z)

)2

−1

∣∣∣∣∣≤ 1
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provided
3r + r2

1− r2 ≤
√

2−1,

or √
2r2 +3r +1−

√
2≤ 0.

This holds whenever r ≤ RS L .
This radius RS L is the sharp S L -radius for F2. For this purpose, let f0 and g0 be

defined by

(2.5) f0(z) =
z(1+ z)
(1− z)2 and g0(z) =

z
1− z

.

Since Re( f0(z)/g0(z)) > 0 and Re(g0(z)/z) > 1/2, the function f0 ∈F2. Also

z f ′0(z)
f0(z)

=
1+3z
1− z2 .

Thus at z = ρ := RS L , ∣∣∣∣∣
(

z f ′0(z)
f0(z)

)2

−1

∣∣∣∣∣=
∣∣∣∣∣
(

1+3ρ

1−ρ2

)2

−1

∣∣∣∣∣= 1.

(b) From inequality (2.4), it follows that

Re
z f ′(z)
f (z)

≤ 3r +1
1− r2 ≤ β

provided
β r2 +3r +1−β ≤ 0,

that is, if r ≤M (β ). For f0 given by (2.5),

z f ′0(z)
f0(z)

=
1+3ρ

1−ρ2 = β (z = ρ := RM (β )),

and so the result in (b) is sharp.
(c) Using Lemmas 1.2, 1.3 and (2.3), it follows that

(2.6) Re
(

z f ′(z)
f (z)

)
> 1− 2r

1− r2 −
r

1+ r
=

1−3r
1− r2 ≥ α

if
α−1+3r−αr2 ≤ 0.

The last inequality holds whenever r ≤ RS ∗(α). For f0 given by (2.5),

z f ′0(z)
f0(z)

=
1−3ρ

1−ρ2 = α (z =−ρ :=−RS ∗(α)),

and this shows that the result in (c) is sharp.
(d) From (2.4) and (2.6), it follows that∣∣∣∣ z f ′(z)

f (z)
−1
∣∣∣∣< Re

(
z f ′(z)
f (z)

)
if

1−3r
1− r2 ≥

3r + r2

1− r2 ,
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that is
r2 +6r−1≤ 0.

The last inequality holds whenever r ≤ RSP
.

Conjecture 2.1. The sharp SP -radius for F2 is

RSP
= RS ∗(1/2) = 3−2

√
2' 0.171573.

Let F3 be the class of all functions f ∈A satisfying the inequality∣∣∣∣ f (z)
g(z)
−1
∣∣∣∣< 1 (z ∈ D)

for some function g ∈A with

Re
(

g(z)
z

)
> 0 (z ∈ D).

Theorem 2.3. For the class F3, the following radius results hold:
(a) the S L -radius is

RS L =
4−2

√
2

√
2(
√

17−4
√

2+3)
' 0.13009,

(b) the M (β )-radius is

RM (β ) =
2(β −1)

3+
√

9+4β (β −1)
,

(c) the S ∗(α)-radius is

RS ∗(α) =
2(1−α)

3+
√

9+4(2−α)(1−α)
,

(d) the SP -radius is

RSP
= RS ∗(1/2) =

2
√

3−3
3

' 0.154701.

The radii in (c) and (d) are sharp.

Proof. (a) Let f ∈F3. Then | f (z)/g(z)−1|< 1 if and only if Re{g(z)/ f (z)}> 1/2. Define
the functions p,h : D→ C by

p(z) =
g(z)

z
and h(z) =

g(z)
f (z)

.

Then p ∈P and h ∈P(1/2). Now

z f ′(z)
f (z)

= 1+
zp′(z)
p(z)

− zh′(z)
h(z)

,

and Lemma 1.2 yields

(2.7)
∣∣∣∣ z f ′(z)

f (z)
−1
∣∣∣∣≤ r(3+ r)

1− r2 .
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By Lemma 1.4, the function f satisfies∣∣∣∣∣
(

z f ′(z)
f (z)

)2

−1

∣∣∣∣∣≤ 1

provided
3r + r2

1− r2 ≤
√

2−1,

or √
2r2 +3r +1−

√
2≤ 0.

Solving this inequality leads to r ≤ RS L .
(b) From inequality (2.7), it follows that

Re
z f ′(z)
f (z)

≤ 3r +1
1− r2 ≤ β

if
β r2 +3r +1−β ≤ 0,

or whenever r ≤ RM (β ).
(c) Inequality (2.7) also yields

Re
(

z f ′(z)
f (z)

)
≥ 1−3r−2r2

1− r2 ≥ α

if
(2−α)r2 +3r +α−1≤ 0.

The last inequality holds if r ≤ RS ∗(α).
To show that RS ∗(α) is the sharp S ∗(α)-radius for F3, consider the functions f0 and g0

defined by

(2.8) f0(z) =
z(1+ z)2

1− z
and g0(z) = z

(
1+ z
1− z

)
.

Since | f0(z)/g0(z)−1|= |z|< 1 and Re(g0(z)/z) > 0, the function f0 ∈F3. Also

Re
(

z f ′0(z)
f0(z)

)
= Re

(
1−3ρ−2ρ2

1−ρ2

)
= α (z =−ρ :=−RS ∗(α)),

and this shows that the result in (c) is sharp.
(d) In view of Lemma 1.5, the circular disk (2.7) lies completely inside the parabolic

region {w : |w−1|< Rew} if
r(3+ r)
1− r2 ≤

1
2
,

or
3r2 +6r−1≤ 0.

The last inequality holds if r ≤ RSP
= RS ∗(1/2) = 1/(3+2

√
3). The function f0 given

by (2.8) satisfies∣∣∣∣ z f ′0(z)
f0(z)

−1
∣∣∣∣= 3ρ +ρ2

1−ρ2 =
1−3ρ−2ρ2

1−ρ2 = Re
(

z f ′0(z)
f0(z)

)
(z =−ρ :=−RSP

).

Thus the radius in (d) is sharp.
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Let F4 be the class of functions f ∈A satisfying the inequality∣∣∣∣ f ′(z)
g′(z)

−1
∣∣∣∣< 1 (z ∈ D)

for some g ∈A with Re(g′(z)) > 0 (z ∈ D). In view of Alexander’s relation between SP

and U C V , the result below follows from Theorem 2.3.

Theorem 2.4. For the class F4, the following sharp radius results hold:
(1) the C (α)-radius is

RC (α) =
2(1−α)

3+
√

9+4(α−2)(α−1)
,

(2) the U C V -radius is

RU C V = RC (1/2) =
2
√

3−3
3

' 0.154701.

Conjecture 2.2. The sharp S L -radius and sharp M (β )-radius for the class F3 are given
by

RS L =
3
2

+
3

2
√

2
− 1

2

√
27
2

+7
√

2' 0.142009, RM (β ) =
2(β −1)

3+
√

9+4(β −1)(β −2)
.

Let F5 be the class of all functions f ∈A satisfying the inequality∣∣∣∣ f (z)
g(z)
−1
∣∣∣∣< 1 (z ∈ D)

for some convex function g ∈A .

Theorem 2.5. For the class F5, the following radius results hold:
(a) the S ∗(α)-radius is

RS ∗(α) =
1−α

1+
√

2+α2−2α
,

(b) the SP -radius is

RSP
= RS ∗(1/2) =

1√
5+2

' 0.236068,

(c) the S L -radius is

RS L = 3−2
√

2' 0.171573,

(d) the M (β )-radius is

RM (β ) =
β −1
1+β

.

Proof. (a) Let f ∈F5. Then h = g/ f ∈P(1/2) and

(2.9)
z f ′(z)
f (z)

=
zg′(z)
g(z)

− zh′(z)
h(z)

.

Since g is convex,

Re
(

zg′(z)
g(z)

)
>

1
2
.
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It follows from Lemma 1.1 that

(2.10)
∣∣∣∣ zg′(z)

g(z)
− 1

1− r2

∣∣∣∣≤ r
1− r2 .

Lemma 1.2 together with (2.9) and (2.10) gives

(2.11)
∣∣∣∣ z f ′(z)

f (z)
− 1

1− r2

∣∣∣∣≤ r
1− r2 +

r
1− r

=
2r + r2

1− r2 .

Thus

Re
(

z f ′(z)
f (z)

)
≥ 1−2r− r2

1− r2 ≥ α

provided
(1−α)r2 +2r +α−1≤ 0.

The last inequality holds if r ≤ RS ∗(α).
Sharpness of the S ∗(α)-radius for F5 can be seen by considering the functions f0 and

g0 defined by

(2.12) f0(z) = z
(

1+ z
1− z

)
and g0(z) =

z
1− z

.

Since | f0(z)/g0(z)−1|= |z|< 1 and g0 is convex, the function f0 ∈F5. Also

z f ′0(z)
f0(z)

=
1−ρ2−2ρ

1−ρ2 = α (z =−ρ :=−RS ∗(α).)

(b) In view of Lemma 1.5, the circular disk (2.11) lies completely inside the parabolic
region {w : |w−1|< Rew} when

2r + r2

1− r2 ≤
1

1− r2 −
1
2
,

or
r2 +4r−1≤ 0.

The last inequality holds if r ≤ RSP
= RS ∗(1/2) The function f0 given by (2.12) satisfies∣∣∣∣ z f ′0(z)

f0(z)
−1
∣∣∣∣= ∣∣∣∣ 2z

1− z2

∣∣∣∣= 2ρ

1−ρ2 =
1−ρ2−2ρ

1−ρ2 = Re
(

z f ′0(z)
f0(z)

)
(z =−ρ :=−RSP

),

and so the radius in (b) is sharp.
(c) By Lemma 1.4 and (2.11), the function f satisfies∣∣∣∣∣

(
z f ′(z)
f (z)

)2

−1

∣∣∣∣∣≤ 1

provided
2r + r2

1− r2 ≤
√

2− 1
1− r2 ,

or
(
√

2+1)r2 +2r−
√

2+1≤ 0.

Solving this inequality yield r ≤ RS L .
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(d) From inequality (2.11), it follows that

Re
z f ′(z)
f (z)

≤ 2r + r2 +1
1− r2 ≤ β

if
(1+β )r2 +2r +1−β ≤ 0,

or if r ≤ RM (β ).

Conjecture 2.3. The sharp S L -radius and M (β )-radius for the class F5 are given by

RS L =−1−
√

2+
√

2
(

2+
√

2
)
' 0.198912, RM (β ) =

(β −1)

1+
√

β 2 +2−2β
.

3. Radius of Uniform Convexity

This section considers sharp radius results for classes of functions introduced by Ratti [25].
Let F6 be the class of functions f ∈A satisfying the inequality∣∣∣∣ f ′(z)

g′(z)
−1
∣∣∣∣< 1 (z ∈ D)

for some univalent function g ∈A .

Theorem 3.1. For the class F6, the following sharp radius results hold:
(a) the C (α)-radius is

RC (α) =
2(1−α)

5+
√

25+4α(α−1)
,

(b) the U C V -radius is

RU C V = RC (1/2) = 5−2
√

6' 0.101021.

Proof. (a) Let f ∈F6, and h : D→ C be given by

h(z) =
g′(z)
f ′(z)

.

Then h ∈P(1/2) and

(3.1)
z f ′′(z)
f ′(z)

=
zg′′(z)
g′(z)

− zh′(z)
h(z)

.

Since g is univalent, it is known [8, Theorem 2.4, p. 32] that

(3.2)
∣∣∣∣ zg′′(z)

g′(z)
− 2r2

1− r2

∣∣∣∣≤ 4r
1− r2 , (|z|= r).

Now Lemma 1.2, (3.1) and (3.2) yield

(3.3)
∣∣∣∣1+

z f ′′(z)
f ′(z)

− 1+ r2

1− r2

∣∣∣∣≤ 5r + r2

1− r2 .

Thus

Re
(

1+
z f ′′(z)
f ′(z)

)
≥ 1−5r

1− r2 ≥ α
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if
αr2−5r +1−α ≥ 0.

The last inequality holds when r ≤ RC (α).
Next consider the functions f0 and g0 defined by

(3.4) f ′0(z) =
(1+ z)2

(1− z)3 and g0(z) =
z

(1− z)2 .

Since
∣∣ f ′0(z)/g′0(z)−1

∣∣= |z|< 1 and g0 is univalent, the function f0 ∈F6. Also

1+
z f ′′0 (z)
f ′0(z)

=
1+5z
1− z2 .

At z =−ρ :=−RC (α),

Re
(

1+
z f ′′0 (z)
f ′0(z)

)
=

1−5ρ

1−ρ2 = α.

This shows that the result in (a) is sharp.
(b) In view of Lemma 1.5, the circular disk (3.3) lies completely inside the parabolic

region {w : |w−1|< Rew} if

5r + r2

1− r2 ≤
1+ r2

1− r2 −
1
2
,

that is, provided

(3.5) r2−10r +1≥ 0.

The last inequality holds if r≤ RU C V = RC (1/2) = 5−2
√

6. The function f0 given by (3.4)
satisfies∣∣∣∣ z f ′′0 (z)

f ′0(z)

∣∣∣∣= ρ(5−ρ)
1−ρ2 =

1−5ρ

1−ρ2 = Re
(

1+
z f ′′0 (z)
f ′0(z)

)
(z =−ρ =−RU C V ),

and so the radius (b) is sharp.

Let F7 be the class of all functions f ∈A satisfying the inequality∣∣∣∣ f ′(z)
g′(z)

−1
∣∣∣∣< 1 (z ∈ D)

for some starlike function g ∈A .

Theorem 3.2. For the class F7, the following sharp radius results hold:

(1) the C (α)-radius is

RC (α) =
2(1−α)

5+
√

25+4α(α−1)
,

(2) the U C V -radius is

RU C V = RC (1/2) = 5−2
√

6' 0.101021.

Proof. Since g is starlike, it is univalent, and the result follows easily from Theorem 3.1.
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Let F8 be the class of all functions f ∈A satisfying the inequality∣∣∣∣ f ′(z)
g′(z)

−1
∣∣∣∣< 1 (z ∈ D)

for some convex function g ∈A .

Theorem 3.3. For the class F8, the following radius results hold:
(a) the C (α)-radius is

RC (α) =
2(1−α)

3+
√

9+4α(α−1)
.

(b) the U C V -radius is

RU C V = RC (1/2) = 3−2
√

2' 0.171573.

The results are sharp.

Proof. (a) The function g is convex, and so is univalent. Proceeding as in the proof of
Theorem 3.1, evidently

(3.6)
∣∣∣∣1+

z f ′′(z)
f ′(z)

− 1+ r2

1− r2

∣∣∣∣≤ 3r + r2

1− r2 ,

which yields

Re
(

1+
z f ′′(z)
f ′(z)

)
≥ 1−3r

1− r2 ≥ α,

or
αr2−3r +1−α ≥ 0.

The last inequality holds when r ≤ RC (α).
Now consider functions f0 and g0 defined by

(3.7) f ′0(z) =
1+ z

(1− z)2 and g0(z) =
z

1− z
.

Since
∣∣ f ′0(z)/g′0(z)−1

∣∣= |z|< 1 and g0 is convex, the function f0 ∈F8. Also

1+
z f ′′0 (z)
f ′0(z)

=
1+3z
1− z2 .

At z =−ρ =−RC (α), then

Re
(

1+
z f ′′0 (z)
f ′0(z)

)
=

1−3ρ

1−ρ2 = α.

This shows that the result in (a) is sharp.
(b) In view of Lemma 1.5, the circular disk (3.6) lies completely inside the parabolic

region {w : |w−1|< Rew} if

3r + r2

1− r2 ≤
1+ r2

1− r2 −
1
2

or whenever

(3.8) r2−6r +1≥ 0.
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The last inequality holds if r≤ RU C V = RC (1/2) = 3−2
√

2. The function f0 given by (3.7)
satisfies,∣∣∣∣ z f ′′0 (z)

f ′0(z)

∣∣∣∣= 3ρ−ρ2

1−ρ2 =
1−3ρ

1−ρ2 = Re
(

1+
z f ′′0 (z)
f ′0(z)

)
(z =−ρ =−RU C V ),

and so the result in (b) is sharp.
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